Hi. My name is Dave Tout and I am a numeracy educator.
This video explains what’s required in undertaking the numeracy skills tasks as part of the Victoria Police entrance examination, and gives you advice about how to answer some of the questions you could find on the exam.
The numeracy tasks we will be looking at are taken from the candidate information booklet. You will find this video more helpful if you read the tasks and the questions beforehand. You can download the candidate information booklet.
The numeracy skills section of the exam tests your ability to read and understand mathematical and numerical information, and to use your skills and knowledge to answer a question.
In policing, numeracy skills are important as you will to need to understand, use, apply, and interpret problems where mathematics is imbedded in a context.
In the role of policing, you are required to observe and collect information and data, to write up reports, and to prepare briefs of evidence. These reports must be clear, to the point, and accurate, and will at times include numerical and mathematical information.
In the numeracy skills section of the exam, you will find questions that test three different types of skill areas.
- First is numbers and algebra.
- The second is measurement and geometry.
- The third is statistics and probability.
In the numeracy exam you only have 35 minutes to do the 30 numeracy questions.
You will have access to an online calculator which you can use for doing some of the maths calculations, but you will still need to have the skill and the knowledge to apply the correct mathematical processes and to understand how to solve the problem.
When you are doing a numeracy problem, it is useful to follow these five steps.
First, its important to read the problem carefully, so you don’t miss anything. What information is being presented, think about what the question is asking you to do.
Next, think about the mathematical processes, how are you going to work out the answer. What mathematical knowledge and skills will you need to use to do this. You might need to make some notes if you need to. Simplify the problem, write it down in your own words, including using maths symbols and expressions. You may find it helpful to write down the calculation needed, or to even draw a diagram.
The third step is to now do the maths required to solve the problem and answer the question. There’s likely to be a few steps to doing this. These might involve doing some working out, or undertaking calculations on paper, or using your calculator.
The fourth step is to select the correct answer, or write down you answer. Make sure you answer the question in the right way. Of course this depends on the type of question it is. In the numeracy skills section of the exam, you may find multiple choice questions, or true and false type questions, or questions where you have to enter a number.
In numeracy, the multiple-choice questions require only one answer. With multiple choice, it’s a good idea to eliminate the answers that you know are wrong straight away. If none of the alternatives provided seem close to your answer, then re-read the question and try and work out what you have done incorrectly, or what you might have missed. There is always one correct option.
If it’s a true of false type question, make sure you choose True or False, or it might be Yes or No, for each statement.
If the question asks you to enter a number or a measurement, make sure that you pay careful attention to what sort of number it is, and whether you need to change it to a correct measurement, or round off the number.
For example, if the question and answer is about money, don’t write in an answer like $12.66666. This should be written as $12.67, which is rounded to the nearest cent.
If it’s a measurement, make sure the answer is written in the correct measurement. For example, is the question asking for an answer in centimetres, or metres, or kilometres.
Also, if the answer is something physical that can’t be a fractional amount, but your answer to your calculations gives you a fraction, make sure you round the number to the best whole number value. For example if the answer requires you to calculate the number of whole packets of an ingredient required for a job, and the answer to your calculation says it’s 4.2 packets, you would need to round this up to 5 whole packets. This is because you cannot buy 0.2 of a packet, and 4 packets would not be enough.
Lastly, the fifth and final step is to check your answers. Have you entered the number you got? You don’t want to make an error in how you type it in. And it’s also critical that you check that your answer seems correct and reasonable. Use your own knowledge and common-sense. Does the number seem about right for this situation, or does it seem way too high or too low? You can change your answer as many times as you like. But always remember to take time to check.
To help you understand what this all means in practice, we are now going to look at how to answer a numeracy problem.
The first one is an example of one of the types of tasks you could be asked to do in the numeracy section of the exam. This question is taken from the candidate information booklet. If you haven’t already done so, you might like to look at the numeracy tasks in the candidate information booklet now. You can download these at policecareer.vic.gov.au under the recruitments process explain tab.
First, remember to read the problem carefully, so that you understand what you are being asked to do. In this problem, the car costs $19,990, but Adut decides to use the company’s finance which means she will have to pay $410 a month for next 5 years.
The question asks, how much interest she will pay, which will be the extra amount over the actual cost of the car, the $19,990.
Now read the question again, and think about what maths you will need to do to solve the problem.
First, you will need to find out how much she actually paid in total, which will be for 5 years, times the 12 months per year, for the total number of months.
Then you need to multiple that by the $410 per month.
Then finally you need to take the actual cost of the car, the $19,900, away from what she paid.
The third step is that you now need to do the maths and work out the answer. First, work out how much she paid in total for the car, which is
5 years times 12 months equals 60 months.
And then 60 months times $410 a month equals $24,600.
Now you need to take away the cost of the car, that is take the $19,900 from the $24,600.
$24600 minus $19,900 equals $4,610.
You probably needed to use your calculator to check that.
So Adut paid $4,610 in interest.
Now the next step, was you needed to select or write down your answer. In this example, you need to write down your answer of $4,610.
Note that often the dollar sign is already written in for you in the answer space, so don’t repeat it.
And then finally, the fifth step, was that you needed to check your answer, make sure that it’s written in the right format using dollars, and if appropriate, cents.
Because the doesn’t have any cents, you could simply write $4610, or you could write, because it is money, four thousand six hundred and ten point zero zero. Both answers will be considered correct.
Then ask yourself, does the answer seem reasonable. In this instance, the answer of $46,10 seems to be reasonable to the payment to the finance company.
Let’s have a look at a second problem.
This question requires you to read and understand quite a complex chart.
So first, you need to read the chart and make sure you know what it’s about, and what all the different bars are telling you.
This graph is telling you how many meters a car will travel before it actually stop, taking into account the speed of the car, the drivers reaction time, and then how far a car will travel even after the breaks are applied.
The question asks you what the reaction distance would be if the car was traveling at 130 kilometres per hour. This information isn’t even in the chart, so you will need to work out the answer, looking for any patterns in the data.
The second step is to read the question again, and think about the maths you will need to do to solve this problem.
The question is asking you to work out the reaction distance at a speed of a 130 kilometres per hour. The graph shows you that at 110 kilometres per hour, the reaction distance is 46 meters. The question asks you though, for the reaction distance at 130 kilometres per hour, which is going to be higher than the 110 kilometres per hour shown on the graph. You need to see if there is a pattern in how the reaction distance increases when the speed goes up each time by 10 kilometres per hour.
When you look at the distance travelled when the diver is reacting, which is shown by the grey bars on the left, you can see that the car travels an extra 4 meters for every 10 kilometres per hour that the car travels. Although in just one instance, this increase is in fact 5.
So you will need to work out how much faster the car is traveling than 110 kilometres per hour, and then you will need to add 4m for each extra 10 kilometres per hour over that the car is traveling.
Step three is now to do the maths. So start by working out how many kilometres per hour extra 130 is from the 110 kilometres per hour that is shown in the graph.
So take 110 away from 130, gives you 20.
So that’s 20 kilometres per hour over the 110 kilometres per hour that is shown on the graph.
And for each extra 10 kilometres per hour, the car travels an extra 4m.
So as the car is traveling 20 kilometres per hour above the 110 you need to add on 4 meters twice.
So that’s an extra 8 meters.
So starting with the reaction distance travelled at 110 kilometres per hour, which is 46 meters, now you need to add on the extra 8 meters, which makes it 54 meters.
Steph 4 is to then select or write down your answer.
As this is a multiple choice, you have to select an answer. Option C matches your answer of 54 meters, so Option C is the correct answer.
Step 5 is checking your answer. Have you chosen the correct answer? In multiple choice, it can be very easy to click on an incorrect answer, especially if you are in a hurry, and ask yourself if the answer and the pattern seems to be about right.
In this example, the answer does seem to fit the pattern, and the good thing about multiple choice questions is that if your answer matches one of the options provided, it indicates that you must be on the right track.
You can use this process for all the different types of numeracy questions.
The best way to get better at numeracy questions is to practice. You can practice undertaking a range of calculations using whole numbers, fractions, decimals and percentages.
You can also read the chapter in Practise Now Victoria Police Entrance Examination on numeracy skills. It goes over the points we have been talking about, and also shows you how to do the different types of questions. Read over the explanations, have a go at the practice exercise, and compare it with the one that has been done in the book.
Practise Now is produced by ACER. The books are available from the ACER book shop, and commercial book sellers.
When you think you are getting better at these types of questions, have a go at the practice tests. There is information about how to get the practice tests on the Victoria Police Entrance Exam web page.
If you are having difficulty answering the numeracy questions, you can contact the Reading Writing Hotline. They can suggest organisations that might be able to assist you, or resources that you can use to help you overcome any problems you are having.
And good luck with the exam.
Updated